Electrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels

نویسندگان

  • Shih-Hao Yeh
  • Hsueh-Kai Chang
  • Ru-Chi Shieh
چکیده

Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetrameric Kir2.1 channels. The order of extent of inward rectification is E224K mutant > E224G mutant > wild type in the absence of internal blockers. Mutating the glycines at the equivalent sites to lysines also rendered weak inward rectifier Kir1.1 channels more inwardly rectifying. Also, conjugating positively charged methanethiosulfonate to the cysteines at site 224 induced strong inward rectification, whereas negatively charged methanethiosulfonate alleviated inward rectification in the E224C mutant. These results suggest that charges at site 224 may control inward rectification in the Kir2.1 channel. In a D172N mutant, spermine interacting with E224 and E299 induced channel inhibition during depolarization but did not occlude the pore, further suggesting that a mechanism other than channel block is involved in the inward rectification of the Kir2.1 channel. In this and our previous studies we showed that the M2 bundle crossing and selectivity filter were not involved in the inward rectification induced by spermine interacting with E224 and E299. We propose that neutral and positively charged residues at site 224 increase a local energy barrier, which reduces K+ efflux more than K+ influx, thereby producing inward rectification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Roles of Charged Amino Acid Residues on the Wall of the Cytoplasmic Pore of Kir2.1

It is known that rectification of currents through the inward rectifier K(+) channel (Kir) is mainly due to blockade of the outward current by cytoplasmic Mg(2+) and polyamines. Analyses of the crystal structure of the cytoplasmic region of Kir2.1 have revealed the presence of both negatively (E224, D255, D259, and E299) and positively (R228 and R260) charged residues on the wall of the cytopla...

متن کامل

The Role of the Cytoplasmic Pore in Inward Rectification of Kir2.1 Channels

Steeply voltage-dependent block by intracellular polyamines underlies the strong inward rectification properties of Kir2.1 and other Kir channels. Mutagenesis studies have identified several negatively charged pore-lining residues (D172, E224, and E299, in Kir2.1) in the inner cavity and cytoplasmic domain as determinants of the properties of spermine block. Recent crystallographic determinatio...

متن کامل

Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels

Outward currents through Kir2.1 channels regulate the electrical properties of excitable cells. These currents are subject to voltage-dependent attenuation by the binding of polyamines to high- and low-affinity sites, which leads to inward rectification, thereby controlling cell excitability. To examine the effects of positive charges at the low-affinity site in the cytoplasmic pore on inward r...

متن کامل

Novel Gating Mechanism of Polyamine Block in the Strong Inward Rectifier K Channel Kir2.1

Inward rectifying K channels are essential for maintaining resting membrane potential and regulating excitability in many cell types. Previous studies have attributed the rectification properties of strong inward rectifiers such as Kir2.1 to voltage-dependent binding of intracellular polyamines or Mg to the pore (direct open channel block), thereby preventing outward passage of K ions. We have ...

متن کامل

Long-pore Electrostatics in Inward-rectifier Potassium Channels

Inward-rectifier potassium (Kir) channels differ from the canonical K(+) channel structure in that they possess a long extended pore (approximately 85 A) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2005